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Abstract. Motivated by a problem of Teissier to bound the intrinsic
volumes of a convex body in terms of the inradius and the circumradius
of the body, we give upper and lower bounds for the intrinsic volumes of
a convex body in terms of the elementary symmetric functions of the so
called successive inner and outer radii. These results improve on former
bounds and, in particular, they also provide bounds for the elementary
symmetric functions of the roots of Steiner polynomials in terms of the
elementary symmetric functions of these radii.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the
n-dimensional Euclidean space Rn. Let 〈 ·, ·〉 and ‖ · ‖ be the standard
inner product and Euclidean norm in Rn, respectively. We denote the n-
dimensional unit ball by Bn and its boundary, i.e., the (n− 1)-dimensional
unit sphere, by Sn−1.

The volume of a set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure,
is denoted by V(M) and we write κn = V(Bn). The set of all i-dimensional
linear subspaces of Rn is denoted by Ln

i . For L ∈ Ln
i , L⊥ denotes its orthog-

onal complement and for K ∈ Kn and L ∈ Ln
i the orthogonal projection of

K onto L is denoted by K|L.
The diameter, the minimal width, the circumradius and the inradius of a

convex body K are denoted by D(K), ω(K), R(K) and r(K), respectively.
For more information on these functionals and their properties we refer to
[5, pp. 56–59]. If f is a functional on Kn depending on the dimension in
which a convex body K is embedded, and if K is contained in an affine space
A then we write f(K;A) to denote that f has to be evaluated with respect
to the space A. With this notation we define the following successive outer
and inner radii.

Definition 1.1. For K ∈ Kn and i = 1, . . . , n let

Ri(K) = min
L∈Ln

i

R(K|L) and ri(K) = max
L∈Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
.
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So Ri(K) is the smallest radius of a K containing solid cylinder with i-
dimensional spherical cross section, and ri(K) is the radius of the greatest
i-dimensional ball contained in K. We obviously have

Rn(K) = R(K), R1(K) =
ω(K)

2
, rn(K) = r(K) and r1(K) =

D(K)
2

.

If we replace in the definition of Ri the min-condition by a max-condition
and in the definition of ri the first max-condition by a min-condition, we
obtain another series of successive outer and inner radii.

Definition 1.2. For K ∈ Kn and i = 1, . . . , n let

Ri(K) = max
L∈Ln

i

R(K|L) and ri(K) = min
L∈Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
.

The outer (inner) radii now start with half of the diameter (half of the
minimal width) and end with the circumradius (inradius). It is clear that
both types of outer radii are increasing in i, whereas the inner radii are
decreasing in i.

For more information on these successive radii, their size for special bodies
as well as computational aspects of these radii we refer to [1, 2, 4, 6, 7, 9,
10, 12]. In particular, we want to mention an open problem concerning the
ratio Rn−i+1(K)/ri(K). In [18] (see also [17]) it was shown that

Rn−i+1(K)
ri(K)

≤ i + 1,

but the optimal bound is still not known. Here, however, we are mainly
interested in the relations of these radii to the intrinsic volumes, which we
introduce next.

For two convex bodies K, E ∈ Kn and a non-negative real number ρ, the
mixed volumes of K and E, Vi(K, E), are defined as the coefficients of the
following polynomial describing the volume of the Minkowski sum K + ρ E,

(1.1) V(K + ρE) =
n∑

i=0

(
n

i

)
Vi(K, E)ρi.

For characterizations and properties of the mixed volumes of convex bodies
we refer to [19, s. 5.1]. If E = Bn the polynomial (1.1) becomes the classical
Steiner polynomial [19, p. 210], which can be written via the normalization
Vi(K) =

(
n
i

)
Vn−i(K, Bn)/κn−i as

(1.2)
n∑

i=0

κn−iVi(K)ρn−i.

Vi(K) is called the i-th intrinsic volume of K since, if K is i-dimensional,
then Vi(K) is the ordinary i-dimensional volume of K. In particular, we
have that Vn(K) is the volume of K, 2Vn−1(K) is the surface area of K,
2κn−1/(nκn)V1(K) is the mean width of K (see [19, p. 42]) and V0(K) = 1
is the Euler characteristic.
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Further the relative inradius r(K;E) and relative circumradius R(K;E)
of K with respect to E are defined, respectively, by r(K, E) = sup{r : ∃x ∈
Rn with x+ r E ⊂ K} and R(K, E) = inf{R : ∃x ∈ Rn with K ⊂ x+R E}.
When E = Bn the classical values r(K) and R(K) are obtained. In [20]
Teissier posed the problem to give bounds of the mixed volumes Vi(K, E)
in terms of the inradius r(K;E) and circumradius R(K;E), as well as to
bound this in- and circumradius in terms of the roots of the polynomial (1.1)
regarded as a formal polynomial in a complex variable.

In [2] bounds for the volume of a convex body are given in terms of the
product of the successive inner and outer radii. In this paper we will give
more general bounds for the intrinsic volumes in terms of the elementary
symmetric functions of the inner and outer radii, which in particular relate
the intrinsic volumes with the circumradius and the inradius of the set. To
this end we denote by

si

(
x1, . . . , xm

)
=

∑
1≤j1<···<ji≤m

xj1 · . . . · xji

the i-th elementary symmetric function of x1, . . . , xm ∈ R, 1 ≤ i ≤ m, and
we set s0

(
x1, . . . , xm

)
= 1.

Theorem 1.1. Let K ∈ Kn. Then for i = 0, . . . , n

(1.3)
κn

κn−i
si

(
r1(K), . . . , rn(K)

)
≤ Vi(K) ≤ κn

κn−i
si

(
R1(K), . . . ,Rn(K)

)
.

For K ∈ Kn with nonempty interior, equality holds in both inequalities if
and only if K is a ball.

For the successive radii of Definition 1.1 we obtain the following upper
bound.

Theorem 1.2. Let K ∈ Kn. Then for i = 0, . . . , n

(1.4) Vi(K) ≤ 2i si

(
R1(K), . . . ,Rn(K)

)
.

The bound is best possible.

Unfortunately, we are not aware of a best possible lower bound on Vi(K)
in terms of si

(
r1(K), . . . , rn(K)

)
. It can easily be shown (see Remark 3.2)

that

(1.5) Vi(K) ≥ 2i

i!
(
n
i

) si

(
r1(K), . . . , rn(K)

)
,

but in general the result is not tight for 1 ≤ i ≤ n−1 (see Remark 3.3). It is
quite tempting to conjecture a lower bound of (2i/i!) si

(
r1(K), . . . , rn(K)

)
,

but such a bound does not exist (cf. Remark 3.3). In fact, we believe that
(2i/i!) si

(
r1(K)2, . . . , rn(K)2

)1/2 are the right candidates for obtaining sharp
lower bounds, and here we get the following partial results.
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Theorem 1.3. Let K ∈ Kn. Then

Vn−1(K) ≥ 2n−1

(n− 1)!

√
sn−1

(
r1(K)2, . . . , rn(K)2

)
,(1.6)

Vn−2(K) ≥ 2
√

2
π

2n−2

(n− 2)!

√
sn−2

(
r1(K)2, . . . , rn(K)2

)
.(1.7)

The bound in (1.6) is best possible.

Finally, we remark that in the case i = n, i.e., with respect to the volume,
the bounds in (1.3), (1.4) and (1.5) were already proved in [2].

The paper is organized as follows. In Section 2 we give some preliminary
results on these radii and related functionals which are needed for the proof
of the theorems. Then, in Section 3 we present the proofs of the main
theorems, as well as some consequences, in particular for the roots of the
Steiner polynomial (cf. Corollary 3.2). Finally, in Section 4 we prove a
formula for the external angles of orthogonal cross-polytopes used in the
proof of Theorem 1.3.

2. Some preliminary results

First we introduce some additional notation. K ∈ Kn is 0-symmetric if
it is symmetric with respect to the origin, i.e., if K = −K. For K ∈ Kn we
denote by K0 =

(
K + (−K)

)
/2 its central symmetral (see [5, p. 79]). Anal-

ogously to the definition of outer radii Ri we introduce a series of successive
diameters, whose relation to the intrinsic volumes was studied in [2].

Definition 2.1. For K ∈ Kn let Di(K) = minL∈Ln
i

D(K|L), i = 1, . . . , n.

Clearly Dn(K) = D(K) and D1(K) = ω(K). The next lemma studies the
behavior of Ri(K) and Di(K) with respect to central symmetrization.

Lemma 2.1. Let K ∈ Kn. Then Di(K0) = Di(K) and Ri(K0) ≤ Ri(K),
for i = 1, . . . , n.

Proof. Let ω(K, u) be the width of the body K in the direction u ∈ Sn−1,
which can be expressed in terms of the support function h(K, ·) of K as
ω(K, u) = h(K, u) + h(K,−u). Clearly D(K) = maxu∈Sn−1 ω(K, u) (see
e.g. [19, p. 42]). Furthermore, for L ∈ Ln

i let Si−1
L = Sn−1 ∩ L. Using the

well known facts that central symmetrization preserves the width in any
direction (cf. e.g. [5, p. 79]) and that h(K|L, u) = h(K, u) for all u ∈ L
(cf. e.g. [19, pp. 37–38]), we get

D(K0|L) = max
u∈Si−1

L

ω(K0|L, u) = max
u∈Si−1

L

{
h(K0|L, u) + h(K0|L,−u)

}
= max

u∈Si−1
L

{
h(K0, u) + h(K0,−u)

}
= max

u∈Si−1
L

ω(K0, u) = max
u∈Si−1

L

ω(K, u)

= max
u∈Si−1

L

{
h(K, u) + h(K,−u)

}
= max

u∈Si−1
L

{
h(K|L, u) + h(K|L,−u)

}
= max

u∈Si−1
L

ω(K|L, u) = D(K|L).
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Hence, for i = 1, . . . , n, we get

Di(K0) = min
L∈Ln

i

D(K0|L) = min
L∈Ln

i

D(K|L) = Di(K).

Since K0|L is 0-symmetric it is 2R(K0|L) = D(K0|L) and thus R(K0|L) =
D(K0|L)/2 = D(K|L)/2 ≤ R(K|L). Hence we also obtain

Ri(K0) = min
L∈Ln

i

R(K0|L) ≤ min
L∈Ln

i

R(K|L) = Ri(K). �

Remark 2.1. By the same reasoning one can show that Ri(K0) ≤ Ri(K)
whereas in the case of the inner radii it is easy to see that ri(K0) ≥ ri(K)
and ri(K0) ≥ ri(K).

In order to state the next lemma, we need some basic definitions from the
theory of polytopes. For an arbitrary polytope P ∈ Kn let Fi(P ) denote the
set of all i-dimensional faces of P , and for F ∈ Fi(P ) let γ(F, P ) denote the
external angle of F . For a definition of γ(F, P ) we refer to Section 4. Then
the i-th intrinsic volume of P can be computed by the formula (see e.g. [19,
p. 210])

(2.1) Vi(P ) =
∑

F∈Fi(P )

γ(F, P )Vi(F ).

For 0 < λ1 ≤ · · · ≤ λn we denote by C∗
n(λ1, . . . , λn) the orthogonal cross-

polytope given by C∗
n(λ1, . . . , λn) = conv{±λiei : i = 1, . . . , n}, where ei

denotes the i-th canonical unit vector. We will write just C∗
n for the regular

cross-polytope C∗
n(1, . . . , 1).

Following the approach used in Lemma 2.1 of [3] for computing the ex-
ternal angles of a regular cross-polytope we obtain the following generalized
formula for the external angles of an orthogonal cross-polytope. For the sake
of completeness, a proof of this lemma will be given in the last section.

Lemma 2.2. Let F i(λl1 , . . . , λli+1
) = conv{λl1el1 , . . . , λli+1

eli+1
}, 0 ≤ i ≤

n − 1, be an i-dimensional face of C∗
n(λ1, . . . , λn), 1 ≤ l1 < · · · < li+1 ≤ n.

The external angle of F i(λl1 , . . . , λli+1
) is given by

2n−i−1

π(n−i)/2

∫ ∞

0
e−x2

 n∏
j=1

j /∈{l1,...,li+1}

∫ x

λj

sPi+1
k=1

1
λ2

lk

0
e−y2

dy

 dx.

The i-face F i(λl1 , . . . , λli+1
) is the i-simplex conv{λl1el1 , . . . , λli+1

eli+1
}

with i-dimensional volume

Vi

(
F i(λl1 , . . . , λli+1

)
)

=
1
i!

√
si

(
λ2

l1
, . . . , λ2

li+1

)
.

Since C∗
n(λ1, . . . , λn) has 2i+1 congruent i-faces of the type F i(λl1 , . . . , λli+1

)
we get by (2.1) the following formulae for the intrinsic volumes.
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Corollary 2.1. The intrinsic volumes of C∗
n(λ1, . . . , λn) are given by

Vn

(
C∗

n(λ1, . . . , λn)
)

=
2n

n!
λ1 · . . . · λn, and for 0 ≤ i ≤ n− 1,

Vi

(
C∗

n(λ1, . . . , λn)
)

=
2n

i!π(n−i)/2

∑
1≤l1<···<li+1≤n

√
si

(
λ2

l1
, . . . , λ2

li+1

)
∫ ∞

0
e−x2

 ∏
j /∈{l1,...,li+1}

∫ x

λj

sPi+1
k=1

1
λ2

lk

0
e−y2

dy

 dx

 .

In particular, we have Vn−1

(
C∗

n(λ1, . . . , λn)
)

=
2n−1

(n− 1)!

√
sn−1

(
λ2

1, . . . , λ
2
n

)
.

3. Proofs of the main results

We start with proving upper and lower bounds on the intrinsic volumes
Vi(K) in terms of the i-th elementary symmetric functions of the radii given
by Definition 1.2.

Proof of Theorem 1.1. It is well known that the i-th mixed volume Vi(K,Bn)
can be expressed as

(3.1) Vi(K, Bn) =
κn

κi

∫
Ln

i

Vi(K|L) dσ(L),

where σ(L) is the Haar measure on the set Ln
i such that σ(Ln

i ) = 1 (see e.g.
[8, Theorem 19.3.2]). As mentioned in the introduction the case i = n of
Theorem 1.1 was shown in [2, Theorem 2.2]. So we can conclude that for
any L ∈ Ln

i , since K|L is an i-dimensional convex body it holds

κi r1(K|L;L) · . . . · ri(K|L;L) ≤ Vi(K|L) ≤ κi R1(K|L) · . . . · Ri(K|L),

with equality if and only if K|L is an i-ball. By the definition of the radii
Rj(K) and rj(K) we have Rj(K|L) ≤ Rj(K) and rj(K|L;L) ≥ rj(K).
Hence, in view of (3.1) we conclude

κnr1(K) · . . . · ri(K) ≤ Vi(K, Bn) ≤ κnR1(K) · . . . · Ri(K).

Since Vi(K) =
(
n
i

)
/κn−iVi(K, Bn) and on account of Rj(K) ≤ Rj+1(K),

rj(K) ≥ rj+1(K) for j = 1, . . . , n− 1, we finally get

Vi(K) ≤ κn

κn−i

(
n

i

)
R1(K) · . . . · Ri(K) ≤ κn

κn−i
si

(
R1(K), . . . ,Rn(K)

)
,

Vi(K) ≥ κn

κn−i

(
n

i

)
r1(K) · . . . · ri(K) ≥ κn

κn−i
si

(
r1(K), . . . , rn(K)

)
.

Obviously, equality holds in both inequalities if and only if K is a ball. �
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Remark 3.1.
i) In general there is no lower (upper) bound on Vi(K) in terms of the

elementary symmetric functions of the outer radii Ri(K) (inner radii
ri(K)), since for i = 2, . . . , n (i = 1, . . . , n) Vi(K) can be arbitrarily
small (large) in comparison to the diameter (minimal width) of K.

ii) The lower bound in inequality (1.3) can be improved by replacing
ri(K) by inner radii defined via projections, i.e., minL∈Ln

i
r(K|L;L).

The proof is the same, but for sake of simplicity we omit this series
of inner radii.

We also want to remark that concerning the so called dual mixed volumes
Ṽi(K) of K ∈ Kn (cf. e.g. [16], [8, §24]) one can get in the same way lower
and upper bounds. Now the lower bound is given in terms of the inner radii
ri(K), but for the upper bound one has to consider outer radii defined via
sections: maxL∈Ln

i
maxx∈L⊥ R

(
K ∩ (x+L)

)
. Instead of (3.1) one has to use

for the dual mixed volumes the integral representation (cf. e.g. [8, p. 158])

Ṽi(K) =
κn

κi

∫ ∫
Ln

i

Vi(K ∩ L) dσ(L).

Next we prove Theorem 1.2 providing an upper bound on Vi(K) in terms
of the i-th elementary symmetric function of the outer radii given by Defi-
nition 1.1.

Proof of Theorem 1.2. It is well known that central symmetrization does not
decrease the intrinsic volumes (cf. e.g. [5, p. 79]) and so we have Vi(K) ≤
Vi(K0) for 0 ≤ i ≤ n. By Lemma 2.1 we also know that Ri(K0) ≤ Ri(K)
and therefore, it suffices to prove the inequality for a 0-symmetric convex
body K ∈ Kn.

We now construct iteratively n pairwise orthogonal unit vectors ui ∈ Sn−1

such that for 1 ≤ i ≤ n

(3.2) K ⊂
{
x ∈ Rn :

∣∣〈uj , x〉
∣∣ ≤ Rj(K), 1 ≤ j ≤ i

}
.

For i = 1 let u1 ∈ Sn−1 be the direction which determines the minimal width
of K, i.e., ω(K) = ω(K, u1). Then R1(K) = ω(K)/2 = ω(K, u1)/2 and
obviously (3.2) is satisfied. In the i-th step, i ≥ 2, let L = lin{u1, . . . , ui−1}⊥,
i.e., the orthogonal complement of the linear hull of the vectors u1, . . . , ui−1.
Moreover, let Li ∈ Ln

i be such that Ri(K) = R(K|Li). Since dim L = n−i+1
there exists a ui ∈ (L ∩Li) ∩ Sn−1. Thus the vectors u1, . . . , ui are pairwise
orthogonal and by the definition of Ri(K) we have K ⊂

{
x ∈ Rn :

∣∣〈uj , x〉
∣∣ ≤

Rj(K), 1 ≤ j ≤ i
}

which shows (3.2).
Hence, after n steps K is contained in the orthogonal parallelepiped

P =
{
x ∈ Rn :

∣∣〈uj , x〉
∣∣ ≤ Rj(K), 1 ≤ j ≤ n

}
.

By the monotonicity of the intrinsic volumes (cf. e.g. [19, p. 277]) and since
Vi(P ) can easily be computed via formula (2.1), we finally get

Vi(K) ≤ Vi(P ) = 2i si

(
R1(K), . . . ,Rn(K)

)
,
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which proves inequality (1.4).
To show that the bounds are in general best possible let Q(µ) be the

orthogonal parallelepiped with edge-lengths µ, µ2, . . . , µn, for µ ≥ 1. The
outer radii Ri of such a box are given by Ri

(
Q(µ)

)
= (1/2)

(∑i
j=1 µ2j

)1/2

(see [6, Theorem 4.4]) and it follows

Vi

(
Q(µ)

)
si

(
R1(Q(µ)), . . . ,Rn(Q(µ))

) = 2i

∑
1≤j1<···<ji≤n µj1 · . . . · µji∑

1≤j1<···<ji≤n

(∏i
k=1

(∑jk
l=1 µ2l

)1/2
) .

When µ →∞, the right hand side tends to 2i. �

As pointed out in the proof above it is sufficient to prove (1.4) for 0-
symmetric convex bodies. Hence, on account of Lemma 2.1, Theorem 1.2 is
equivalent (cf. Definition 2.1) to:

Corollary 3.1. Let K ∈ Kn. Then for i = 0, . . . , n

(3.3) Vi(K) ≤ si

(
D1(K), . . . ,Dn(K)

)
.

The bound is best possible.

Next we deal with lower bounds on the intrinsic volumes in terms of the
inner radii ri(K). In [2, Theorem 3.1] it is shown that for i = 0, . . . , n,

Vi(K) ≥ 1
i!

Dn(K) · . . . ·Dn−i+1(K).

Since Di(K) ≤ Di+1(K) and Dj(K) ≥ 2 rn−j+1(K) (cf. [2, Lemma 2.1]) we
find:

Remark 3.2. Let K ∈ Kn. Then for i = 0, . . . , n

Vi(K) ≥ 2i

i!
(
n
i

) si

(
r1(K), . . . , rn(K)

)
.

For 1 ≤ i ≤ n− 1, however, this bound is in general not best possible as
already the 2-dimensional case and i = 1 shows. From the known inequality
for K ∈ K2 giving the minimum value of V1(K) for fixed D(K) and ω(K)
[5, p. 87], it can be easily obtained that V1(K) ≥

√
D(K)2 − 2r(K)2 +

2r(K) arcsin
(
2r(K)/D(K)

)
. Here the 0-symmetric cap-bodies given by the

convex hull of a circle of radius r(K) and two diametrically opposite points
exterior to it at distance apart D(K) give the equality. Then it is a simple
computation to check that:

Remark 3.3. Let K ∈ K2. Then

V1(K) ≥ c

(
D(K)

2
+ r(K)

)
= c s1

(
r1(K), r2(K)

)
,

where c = 2arcsin t0 = 1.478 . . . and t0 is the unique solution of the equation
arcsin t =

√
1− t2. Equality holds if and only if K is the 0-symmetric cap-

body Kc with 2r(Kc)/D(Kc) = t0.
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The cap-bodies of Remark 3.3 also show that a lower bound of the form
Vi(K) ≥ (2i/i!) si

(
r1(K), . . . , rn(K)

)
does not exit in general. However, as it

will be shown next, we can get an optimal lower bound at least on Vn−1(K)
if we replace the i-th elementary symmetric function si

(
r1(K), . . . , rn(K)

)
by

√
si

(
r1(K)2, . . . , rn(K)2

)
.

Proof of Theorem 1.3. Without loss of generality we may assume dim K =
n. First we construct iteratively n pairs of points xi, yi, 1 ≤ i ≤ n, such that

i) ‖xi − yi‖ = 2 ri(K) and

ii) {xi − yi : i = 1, . . . , n} are pairwise orthogonal.
(3.4)

For i = 1 let x1, y1 ∈ K with ‖x1 − y1‖ = D(K) = 2r1(K). In the i-
th step, i ≥ 2, let L = lin{x1 − y1, . . . , xi−1 − yi−1}⊥ and let Li ∈ Ln

i ,
zi ∈ Rn, such that ri(K) = r

(
K ∩ (zi + Li); zi + Li

)
. Obviously, we have

dim(L∩Li) ≥ 1 and let u be a non-trivial vector in L∩Li. By the definition
of ri(K) we can find two points xi, yi ∈ K contained in the line zi + lin{u}
with ‖xi − yi‖ = 2 ri(K). Hence we have verified (3.4).

Now let P = conv{xi, yi : i = 1, . . . , n} ⊂ K and without loss of
generality we may assume that xi − yi = 2 ri(K) ei. Applying successive
Steiner symmetrizations (cf. [11, pp. 168]) with respect to the coordinate
hyperplanes lin{ei}⊥, 1 ≤ i ≤ n, we transform P into a polytope P s

which is symmetric with respect to all coordinate hyperplanes and such that∥∥P s ∩ lin{ei}
∥∥ ≥ 2 ri(K). Hence P s contains the orthogonal cross-polytope

C∗
n

(
r1(K), . . . , rn(K)

)
. Since Steiner symmetrizations do not increase the

intrinsic volumes (see e.g. [11, p. 171]) we get

(3.5) Vi(K) ≥ Vi

(
C∗

n

(
r1(K), . . . , rn(K)

))
.

In the particular case i = n− 1 the required lower bound in (1.6)

Vn−1(K) ≥ 2n−1

(n− 1)!

√
sn−1

(
r1(K)2, . . . , rn(K)2

)
is a direct consequence of (3.5) and of Corollary 2.1.

In order to show that this bound can not be improved in general we
consider the orthogonal cross-polytope C∗

n(µ) := C∗
n(µ, µ2, . . . , µn), for µ >

1. The inner radii ri of such a cross-polytope are given by ri

(
C∗

n(µ)
)

=(∑n
j=n−i+1 µ−2j

)−1/2 (see [6, Theorem 4.4]) and we get

Vn−1

(
C∗

n(µ)
)√

sn−1

(
r1(C∗

n(µ))2, . . . , rn(C∗
n(µ))2

) =
2n−1

(n−1)!

√∑n
i=1

∏
j 6=i µ

2j√∑n
i=1

∏
j 6=i

(∑n
k=n−j+1 µ−2k

)−1
.

When µ →∞, the right hand side tends to 2n−1/(n− 1)!.
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In the case i = n − 2 the formula for Vn−2

(
C∗

n(λ1, . . . , λn)
)

given in
Corollary 2.1 can be rewritten as

(3.6) Vn−2

(
C∗

n(λ1, . . . , λn)
)

=
2n−2

π(n− 2)!
g(λ1, . . . , λn),

where

g(λ1, . . . , λn) =
n∑

i=1

√
sn−2

(
λ2

1, . . . , λ̂
2
i , . . . , λ

2
n

)
arccos

(∑n
j=1

1
λ2

j

)
− 2 1

λ2
i∑n

j=1
1
λ2

j

.

Here λ̂ means that we omit the value λ. By elementary but tedious calcu-
lations one can show that f(λ1, . . . , λn) = g(λ1, . . . , λn)/

√
sn−2

(
λ2

1, . . . , λ
2
n

)
attains its minimum when λ1 = · · · = λn, i.e., when C∗

n(λ1, . . . , λn) is a
regular cross-polytope. Hence

f(λ1, . . . , λn) ≥
√

2n arccos
n− 2

n
,

and together with (3.6), (3.5) we obtain

Vn−2(K) ≥ Vn−2

(
C∗

n

(
r1(K), . . . , rn(K)

))
≥ 2n−2

(n− 2)!

√
2n

π
arccos

n− 2
n

√
sn−2

(
r1(K)2, . . . , rn(K)2

)
.

A direct computation shows that
√

n arccos
(
(n − 2)/n

)
≥ 2, which finally

verifies inequality (1.7). �

We want to remark that it seems to be quite likely that

Vi

(
C∗

n(λ1, . . . , λn)
)
/
√

si

(
λ2

1, . . . , λ
2
n

)
is minimized when all λi coincide, i.e., for a regular cross-polytope. This
would immediately lead to an extension of the bounds given in Theorem 1.3
to all other intrinsic volumes. We think, however, that the right lower bound
on Vi(K) is given by (2i/i!)

√
si

(
r1(K)2, . . . , rn(K)2

)
. The orthogonal cross-

polytopes C∗
n(µ, µ2, . . . , µn), µ large, show that this bound would be best

possible (cf. Corollary 2.1).

Finally, at the end of this section we apply our bounds on the intrinsic
volumes to the elementary symmetric functions of the roots of the Steiner
polynomial. The problem to bound the roots in terms of the in- circumradius
or more generally in terms of successive inner and outer radii was the starting
point of our investigations. For more information on the roots of Steiner
polynomials, their locations and their sizes we refer to [13, 14, 15].

Let γi, i = 1, . . . , n, be the roots of the Steiner polynomial

f(K, s) =
n∑

i=0

κn−iVi(K)sn−i
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regarded as a formal polynomial in a complex variable s ∈ C. From the
identity

∑n
i=0 κn−iVi(K)sn−i = κn

∏n
i=1(s− γi) we get

(−1)i κn−i

κn
Vi(K) = si

(
γ1, . . . , γn

)
,

and so the inequalities of Theorem 1.1 and Theorem 1.2 imply:

Corollary 3.2. Let K ∈ Kn and γj, j = 1, . . . , n be the roots of f(K, s).
Then for i = 0, . . . , n

si

(
γ1, . . . , γn

)
≤ (−1)i si

(
R1(K), . . . ,Rn(K)

)
,

si

(
γ1, . . . , γn

)
≥ (−1)i si

(
r1(K), . . . , rn(K)

)
,

si

(
γ1, . . . , γn

)
≤ (−2)i κn−i

κn
si

(
R1(K), . . . ,Rn(K)

)
.

In the cases i = n− 1, n− 2 lower bounds for the elementary symmetric
functions of the roots γj in terms of the inner radii rj(K) can be obtained
using Theorem 1.3.

4. Intrinsic volumes of orthogonal cross-polytopes

In order to give the proof of Lemma 2.2 we need some more notation.
For a polytope P ∈ Kn and an i-face F ∈ Fi(P ) let N(F, P ) be the normal
cone of P in F , i.e., the positive hull of all outer unit normal vectors of
the supporting hyperplanes of F , embedded in the Euclidean space Rn−i.
The external angle of F , denoted by γ(F, P ), is the (n− i− 1)-dimensional
spherical measure of N(F, P )∩ Sn−i−1 divided by (n− i)κn−i, i.e., the total
spherical measure of the (n − i − 1)-dimensional unit sphere (cf. e.g. [19,
pp. 98–100]).

Proof of Lemma 2.2. Let i ∈ {0, . . . , n − 1} and let F i(λl1 , . . . , λli+1
) =

conv{λl1el1 , . . . , λli+1
eli+1

} be an i-face of C∗
n(λ1, . . . , λn), 1 ≤ l1 < · · · <

li+1 ≤ n. For the sake of brevity we will denote that i-face just by F i, its
normal cone by N(F i) and the external angle by γ(F i).

The 2n−i−1 outer normal vectors of the supporting hyperplanes of the
facets containing F i are given by ∑

j /∈{l1,...,li+1}

εj

λj
ej +

i+1∑
k=1

1
λlk

elk : εj ∈ {−1, 1}

 ,

and the normal cone N(F i) is the positive hull of these vectors. Using polar
coordinates we find (cf. [3])∫

N(F i)
e−‖x‖

2
dx = γ(F i)(n− i)κn−i

∫ ∞

0
e−r2

rn−i−1 dr

= γ(F i)(n− i)κn−i
1
2
Γ

(
n− i

2

)
= γ(F i)π(n−i)/2.

(4.1)
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In order to evaluate the integral on the left hand side let U =
{
x ∈ Rn−i :

xl1 ≥ 0, |xj | ≤ xl1 , j /∈ {l1, . . . , li+1}
}

and let f : U −→ N(F i) be the linear
and bijective map defined as

f(x) =
∑

j /∈{l1,...,li+1}

xj

λj
ej + xl1

i+1∑
k=1

1
λlk

elk .

By this parametrization of the normal cone N(F i) we get

∫
N(F i)

e−‖x‖
2
dx =

√∑i+1
k=1

1
λ2

lk∏
j /∈{l1,...,li+1} λj

∫
U

e−‖f(x)‖2dx.

Setting αi =
√∑i+1

k=1 1/λ2
lk

and denoting for short by
∏
∗j the product∏

j /∈{l1,...,li+1} we obtain∫
N(F i)

e−‖x‖
2
dx =

αi∏
∗j λj

∫
U

e−‖f(x)‖2dx

=
αi∏
∗j λj

∫
U

e
−
P

j /∈{l1,...,li+1}
x2

j

λ2
j

−
 Pi+1

k=1
1

λ2
lk

!
x2

l1
dx

=
αi∏
∗j λj

∫ ∞

0
e−α2

i t2

∏
∗j

∫ t

−t
e
−

x2
j

λ2
j dxj

 dt

=
2n−i−1αi∏

∗j λj

∫ ∞

0
e−α2

i t2

∏
∗j

∫ t

0
e
−

x2
j

λ2
j dxj

 dt.

Making the changes of variable x = αi t and y = xj/λj for j /∈ {l1, . . . , li+1},
yields by (4.1) the desired formula. �
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